Note: Research Thesis

This is a thesis topic that is designed as an opportunity for excellent students who are interested in getting a first dive into research.

For this topic, there is a very high risk of failure!!!

Please note that this only make sense if

- a) you understand the topic presented in the slides,
- b) you are willing to work yourself into the topic and to read some background material,
- c) you have excellent theoretical skills, and
- d) you are willing and capable to work independently on a challenging topic.

As a **reward**, there is a **high likelihood** that a **scientific publication** is the outcome.

Context:

- especially underwater video streams often contain longer sequences of "uninteresting" data
- e.g., robot is in the open water column, thrusters generate sediment plumes, etc.
- that need to be manually removed

"uninteresting" as there is "nothing to see"

"interesting" due to multiple "things to see"

Tasks:

- derive methods for machine recognition of "interesting" images, respectively image-sequences by investigating
- (A) measures for image complexity, e.g., Local Radius Index (LRI) to assess texture complexity
- (B) Deep Learning, e.g., semantic segmentation with, e.g., a DeepLabV3 RESNET-50 architecture

Note:

- typically the whole image is interesting or not,
- i.e., segmentation of the image itself into interesting/not-interesting sub-parts is not necessarily needed

this can play a role when selecting a suited Deep Learning method

Topics for the Literature Survey (State of the Art) Part

- Underwater Vision and its Applications
- Image "complexity" measures (e.g., Image Entropy, Anisotropy, etc.)
- Deep Learning for image classification and semantic segmentation

video data that can be used for generating training & testing data-sets:

http://robotics.jacobs-university.de/TMP/BScTheses/data/Underwater-Valentin3D/