
RoboGuard,
a Teleoperated Mobile Security Robot

Andreas Birk and Holger Kenn
International University Bremen, Campus Ring 1, 28759 Bremen, Germany

Vrije Universiteit Brussel, AI-lab, 1050 Brussel, Belgium
fax: +49-421-200-3103, email: birk@ieee.org

final version:

Control Engineering Practice,

volume 10, no. 11, pp. 1259-1264, Elsevier, 2002

Abstract

The so-called RoboGuard is a mobile security device which is tightly integrated into the
existing surveillance framework developed and marketed by Quadrox, a Belgian SME. Robo-
Guards are semi-autonomous mobile robots providing video streams via wireless Intranet-
connections to existing watchguard systems, supplemented by various basic and optional be-
haviors. RoboGuards fill several market-niches. Especially, they are a serious alternative to
the standard approach of using Closed Circuit Television (CCTV) for surveillance. The paper
describes how the main challenges from the telematics viewpoint, namely ensuring Quality of
Service (QoS) and Fail-Safe Guarantees (FSG), are solved in this system.

Keywords:

tele-operation, realtime control, human in the loop, behavior-oriented AI, surveillance, service
robotics

1 Introduction

The so-called RoboGuard is a joint development between Quadrox (see [QUA]), a Belgian
security SME, and two academic partners, the AI-lab of the Flemish Free University of
Brussels (VUB) and the Interuniversity Micro-Electronics Center (IMEC). A RoboGuard
allows remote monitoring through a mobile platform using onboard cameras and sensors.
RoboGuards are supplements and often even alternatives to standard surveillance technology,
namely Closed Circuit Television (CCTV) and sensor-triggered systems. RoboGuards are
tightly integrated into the existing range of products of Quadrox. This is an important as-
pect for the acceptance of any novel technology in well-established markets as customers are
usually not willing to completely replace any existing infrastructure.

For efficiency and security reasons, the RF-transmitted video-stream of the on-board cam-
eras can be compressed using a special wavelet-encoding (see [DC97]). The IMEC is the
responsible partner for this feature of RoboGuard. The mobile base and its control, which
are the main focus of this paper, are at the hands of the VUB AI-lab. From the telematics

1



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 2

viewpoint, the major challenges in this part of the project are to ensure Quality of Service
(QoS) and Fail-Safe Guarantees (FSG) despite the unpredictable performance of standard
Internet/Intranet-technologies, especially when wireless components are involved.

In accordance with recent interest in service robotics (see e.g. [Eng89] for an overview),
there has also been previous work on security robots. This work is widely scattered, ranging
from unmanned gunned vehicles for military reconnaissance operations (see [AHE

�

90]) to
theoretical research on reasoning within decision-theoretic models of security (see [MF99]).
Our approach deals with a system operating in semi-structured environments under human
control and which is a product, i.e., it must be competitive to existing alternative solutions for
the task.

The rest of this article is structured as follows. In section two, the software architecture
of the RoboGuard is described. In doing so, there is a special emphasis on the main chal-
lenges from the telematics viewpoint, namely, how Quality of Service (QoS) and Fail-Safe
Guarantees (FSG) can be ensured when an unreliable wireless network connection is a major
part of the control loop. The third section presents the hardware and the low-level software
environment with which the system is implemented. Section four concludes the article.

2 The Software Architecture

— FIGURE 1 about here —
RoboGuards are teleoperated via standard network technologies by human watchguards

(figure 1). The human in the loop ideally feels like being in full control of the system. But the
unpredictable performance of networks, in terms of bandwidth, latency, and even reliability,
makes it necessary to implement quite some autonomy on teleoperated devices. In doing so,
there are two major issues, namely ensuring FSG and QoS. FSG must never be violated at
any cost. For a mobile robot, this means for example that obstacles must be avoided or that
the base must be stopped to avoid serious damages. QoS in contrast defines constraints which
maximize utility as long as they are not violated. A timely response to requests from the
operator for example ensures that the RoboGuard moves along its path as desired. If these
constraints are occasionally violated, they should at most cause some slight inconveniences to
the operator, but they never must put the whole device or mission at risk.

— FIGURE 2 about here —
The main challenge for telematics applications is to find a software architecture which

supports these different types of processes. For RoboGuard, we use following approach (fig-
ure 2). The run-time system consists of three cyclic master threads T0, T1, and T2 running in
timeslots in a 125 Hz major cycle. T0 includes everything dealing with FSQ. It establishes a
hard realtime control-system. It is run to completion and its components are scheduled offline.
On the RoboGuard, T0 covers the motor- and basic motion-control as well as odometry and
positioning.

The sub-threads of the master-thread T1 are so-called behaviors. Following the field of
behavior-oriented robotics (see e.g. [Bro86, Ste91, Ste94] for an overview), reactive control
schemes are used to establish close, dynamic couplings between sensors and motors (see
[Bro86, Ste91]) which are computed in pseudo-parallel. Behaviors on the RoboGuard can be
used to keep the robot on a trajectory, to avoid obstacles, to approach a target, to autonomously
scan for intruders, and so on. The steering commands from the operator are serviced in a



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 3

dedicated behavior. They are transformed to motion commands and fused with the motion
commands from all other behaviors.

— FIGURE 3 about here —
For the behaviors, soft realtime constraints are the only possible way to go. The “ideal”

deadline until when a behaviors has to be handled is in most cases not known as it depends
on unpredictable or simply too many conditions. The behaviors are scheduled online by a
special so-called B-scheduler (see [BK00]) which is invoked by T1. Note that this scheduler
as well as the behaviors are pre-empted by the master-scheduler. The B-scheduler guarantees
a idle-free, optimally balanced execution of the behaviors, thus optimizing QoS.

— FIGURE 4 about here —
Spare time activities, i.e., processes which neither contribute to the FSG nor the QoS,

are handled in the master-thread T2. They can include the occasional change of mission
parameters by the operator, the construction of environment maps, and so on.

2.1 The hard realtime control

The T0 layer interacts with the higher layers via a shared memory buffer that is written by a
thread from a higher layer and is read by the lower-layer T0 thread. The write operation is
made atomic by delaying the execution of the T0 thread during write operations. So, target-
values in the motion-controller can be asynchronously set by higher level behaviors.

The motion-controller so-to-say transforms the target-values on basis of odometric data
to appropriate target-values for the motor-control. The motion- and motor-control layers are
based on generic software modules for differential drive robots, featuring

� PID-control of wheel speed
� odometric position- and orientation-tracking
� rotational and translational trajectory control
� emergency breaking

As mentioned before, all of the involved subthreads T0.x are scheduled off-line to achieve
a hard real-time control. This allows especially to include an emergency-module which en-
sures that the robot is stopped if it is extremely close to an obstacle. This subthread uses active
breaking to get the base to a fast, but uncontrolled stop. Hence, the base will be protected in
such circumstances from damage, but valuable positioning and trajectory information will be
necessarily lost as this harsh breaking will include slipping motions.

The option of this subthread is hence explicitly for guaranteeing failure-safety, which only
kicks in on extremely rare occasions. Normal obstacle avoidance, including controlled stops
which are autonomously activated by the base, are handled on the layer of T1.

2.2 The soft realtime control via behaviors

The hard realtime is needed to ensure FSG. But for tele-operated devices in general, network
performance, especially for wireless solutions, can usually not be predicted. Hence, hard
realtime conditions are not an option for complete control of the device. Furthermore, hard
realtime software is difficult to maintain and to extent.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 4

The major trick in our software architecture is that a soft realtime scheduler for behaviors
is run as part of the hard realtime schedule. In behavior-oriented robotics, the control of
a system is distributed over various processes or behaviors running in virtual parallel. The
different behaviors, like controlled obstacle avoidance, ensure a smooth performance of the
base.

A core behavior, especially from the viewpoint of a teleoperated device, is operator com-
munication, i.e., the transmission of control states from the operator’s console or so-called
cockpit to the control hardware (figure 4). To ensure a low-latency operation over the Internet
link, a protocol based on UDP packets has been implemented. The protocol is completely
stateless. The packets are formed at the cockpit by synchronous evaluation of the control state
and transmission to the onboard PC of the RoboGuard platform via Internet. Here, they are
received and transmitted to the RoboCube via the serial port. The communication behavior
parses the packets and makes its content available to other behaviors via shared memory. Op-
erator command-data for motion is simply fused with the data of other autonomous behaviors.

To ensure low-latency-operation, there is no retransmission on lost packets although UDP
does not guarantee successful delivery of packets. However, since packets are transmitted
synchronously and are only containing state information, there is no need to resend a lost
packet since the following packet will contain updated state information. By exploiting this
property of the protocol, low-latency operation can be assumed.

The communication between the RoboCube and the onboard PC uses inband handshaking
to prevent buffer overruns in the RoboCube software. The communication layer software in
the RoboCube confirms every packet with a 0x40 control code. Only if this control code
has been received, the onboard PC communication layer software transmits the next packet.
If the RoboCube communication layer software did not yet confirm a packet when a new
packet arrives from the Internet transport layer, this packet is discarded so that the control
layer software only receives recent packets, again ensuring low-latency operation.

Moreover, the communication layer measures the time between two packets. Whenever
it becomes too large, the command information in the last packet is discarded and the base
is transfered into a safe state depending on sensor information, i.e. stopped with the motor
controller actively holding the last position.

Plausibility checks on the same layer can be used to discard packets or to modify the
implications of the information they contain. This is done in a rule-based module. This func-
tionality is optional and allows a convenient incorporation of background knowledge about
particular application domains.

2.3 The OS support

The RoboGuard control software relies on the RoboCube controller platform, which is shortly
described below, and on it’s CubeOS operating system to implement the control application.
The CubeOS nanokernel contains real-time multi-threading, abstract communication inter-
faces and thread control primitives. On top of the nanocore, a set of software drivers provides
an application programming interface to the RoboCube’s hardware.

3 The Hardware Implementation of the System

— FIGURE 5 about here —



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 5

The implementation of the RoboGuard is based on the so-called CubeSystem, a kind of
construction kit for robotic systems, engineered at the VUB AI-lab. The VUB AI-lab has quite
some tradition in developing flexible robot control hardware. Various experimental platforms
have been build in the lab starting from the mid-eighties up until now. The center of the
CubeSystem is the so-called RoboCube controller hardware (figure 7) based on the MC68332
processor. The compact physical shape of RoboCube is achieved through several techniques.
First, board-area is minimized by using SMD-components. Second, three boards are stacked
on each other leading to cubic design, hence its name RoboCube.

— FIGURE 6 about here —
RoboCube has a open bus architecture which allows to add “infinitely” many sensor/motor-

interfaces (at the price of bandwidth). But for most applications the standard set of interfaces
should be more than enough. RoboCube’s basic set of ports consists of

� 24 analog/digital (A/D) converter,
� 6 digital/analog (D/A) converter,
� 16 binary Input/Output (binI/O),
� 5 binary Inputs,
� 7 timer channels (TPC), and
� 3 DC-motor controller with quadrature-encoding (QDEC).

The RoboCube is described in more detail in [BKW00, BKW98].

— FIGURE 7 about here —
In addition to its central component, the RoboCube as controller hardware, the CubeSys-

tem provides additional hardware, including electronics and mechanics, and software com-
ponents. The CubeSystem features for example a special operating system, the CubeOS (see
[Ken00]), which ranges from a micro-kernel over drivers to special high-level languages like
the process description language PDL (see [Ste92]). The CubeSystem is used in basic and ap-
plied research, industrial projects and academic education (see [BWBK99, BWB

�

98, BB98,
Bir98]). Therefore, a wide range of sensor- and motor-components exists. The CubeSystem
also includes dedicated RF-network components. For compatibility reasons, radio-ethernet
serviced via a mobile PC is used in the RoboGuard. This PC is also used to compute the
video-compression. All control and service related data going to and coming from the cockpit
is directly relayed from the RF-connection to the RoboCube which handles all service and
control related tasks on the RoboGuard.

4 Conclusion

The paper described the RoboGuard, a commercial surveillance robot teleoperated via In-
tranets. On its hardware side, the implementation of the RoboGuard is based on the CubeSys-
tem, a kind of construction kit for robotic systems. Its use in the design of the RoboGuard is
shortly presented in this article.

The main focus of this article is on the general problem of ensuring secure but conve-
nient control of a tele-operated device. We presented a special software architecture which
incorporates Quality of Service (QoS) and Fail-Safe Guarantees (FSG). The main idea of the
architecture is to find a suited way to combine hard and soft realtime scheduling.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 6

Concretely, we use an hierarchical scheduling structure as follows. On the highest layer,
there are only three threads T0, T1, T2 running in time-slots in a fixed frequency master cycle.
T0 is run to completion and its subthreads T0.x establish a hard realtime control, ensuring
FSG. The thread T1, which can be preempted, invokes a further soft-realtime scheduler for
behaviors, which provide QoS. The behaviors establish close, dynamic couplings between
sensors and motors computed in pseudo-parallel. This includes the steering-commands from
the human in the loop, which are simply fused with the autonomous functionalities. The
third thread T2 allows optional non-uniform processing, e.g., for operator changes of mission
parameters.

References

[AHE
�

90] W.A. Aviles, T.W. Hughes, H.R. Everett, A.Y. Umeda, S.W. Martin, A.H. Koya-
matsu, M.R. Solorzano, R.T. Laird, and S.P. McArthur. Issues in mobile robotics:
The unmanned ground vehicle program teleoperated vehicle. In SPIE Mobile
Robots V, pages 587–597, 1990.

[BB98] Andreas Birk and Tony Belpaeme. A multi-agent-system based on heteroge-
neous robots. In Alexis Drogoul, Milind Tambe, and Toshio Fukuda, editors,
Collective Robotics, CRW’98, LNAI 1456. Springer, 1998.

[Bir98] Andreas Birk. Robot learning and self-sufficiency: What the energy-level can tell
us about a robot’s performance. In Proceedings of the Sixth European Workshop
on Learning Robots, LNAI 1545. Springer, 1998.

[BK00] Andreas Birk and Holger Kenn. Programming with behavior-processes. In 8th
International Symposium on Intelligent Robotic Systems, SIRS’00, 2000.

[BKW98] Andreas Birk, Holger Kenn, and Thomas Walle. Robocube: an “universal”
“special-purpose” hardware for the robocup small robots league. In 4th Interna-
tional Symposium on Distributed Autonomous Robotic Systems. Springer, 1998.

[BKW00] Andreas Birk, Holger Kenn, and Thomas Walle. On-board control in the robocup
small robots league. Advanced Robotics Journal, 14(1):27 – 36, 2000.

[Bro86] Rodney Brooks. Achieving artificial intelligence through building robots. Tech-
nical Report AI memo 899, MIT AI-lab, 1986.

[BWB
�

98] Andreas Birk, Thomas Walle, Tony Belpaeme, Johan Parent, Tom De Vlaminck,
and Holger Kenn. The small league robocup team of the vub ai-lab. In Proc. of
The Second International Workshop on RoboCup. Springer, 1998.

[BWBK99] Andreas Birk, Thomas Walle, Tony Belpaeme, and Holger Kenn. The vub ai-lab
robocup’99 small league team. In Proc. of the Third RoboCup. Springer, 1999.

[DC97] S. Dewitte and J. Cornelis. Lossless integer wavelet transform. IEEE Signal
Processing Letters 4, pages 158–160, 1997.

[Eng89] Joseph F. Engelberger. Robotics in Service. MIT Press, Cambridge, Mas-
sachusetts, 1989.

[Ken00] Holger Kenn. Cubeos, the manual. Technical Report MEMO 00-04, Vrije Uni-
versiteit Brussel, AI-Laboratory, 2000.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 7

[MF99] N. Massios and Voorbraak F. Hierarchical decision-theoretic robotic surveil-
lance. In IJCAI’99 Workshop on Reasoning with Uncertainty in Robot Naviga-
tion, pages 23–33, 1999.

[QUA] The quadrox website. http://www.quadrox.be.

[Ste91] Luc Steels. Towards a theory of emergent functionality. In Jean-Arcady
Meyer and Steward W. Wilson, editors, From Animals to Animats. Proc. of the
First International Conference on Simulation of Adaptive Behavior. The MIT
Press/Bradford Books, Cambridge, 1991.

[Ste92] Luc Steels. The pdl reference manual. Technical Report MEMO 92-05, Vrije
Universiteit Brussel, AI-Laboratory, 1992.

[Ste94] Luc Steels. The artificial life roots of artificial intelligence. Artificial Life Jour-
nal, 1(1), 1994.

RoboGuard
cockpit

down-link

up-link

Internet
(Intranet)

RF-connection

Figure 1: RoboGuards are teleoperated from a so-called cockpit by a human watchguard. Despite
the human in the loop, RoboGuards need quite some autonomous functionality ensuring FSG and
QoS as the network performance is unknown and can even break completely down, especially as
wireless components are involved.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 8

thread T0: autonomous, hard realtime control

- runs to completion (< 1 msec)

- consists of sub-threads T0.x

* scheduled offline

* T0.x ensure 

thread T1: semi-autonomous, soft realtime control

- runs with preemption

- invokes a dedicated scheduler (B-scheduling)

thread T2: non-uniform processing

- runs with preemption

- services spare-time activities

* online scheduling of sub-threads T1.x

* implementing a rich set of behaviors

* one sub-thread services the operator

* T1.x ensure 

* operator changes of mission parameters

* building up environment maps

* etc.

FSG

QoS

Figure 2: All threads running on a RoboGuards are classified into three types. For each type, a
respective master-tread handles the invocation of its related sub-thread. This scheme allows the
combined usage of hard realtime, soft realtime, and non-uniform processing.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 9

125 Hz IRQ

emergency control

MC68332 onboard TPU

M M

Channels: A B C D E F

Q
D
E
C
 
1

Q
D
E
C
 
1

Q
D
E
C
 
2

Q
D
E
C
 
2

P
W
M

P
W
M

update position
and orientation

update motion
errors

motion control

compute 
target speeds

compute 
correction values

set new
pulsewidth

read quadrature
decoders

update PID
errors

motor control

update sensor
values

sanity
check

active breaking
if necessary

Figure 3: The tasks for realtime control are cyclic processes running at a fixed frequency. Their
target-values are asynchronously set by higher level behaviors.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 10

Cockpit
PC

Application

Transport

Internet

Network

Data Link

Physical

Internet
transmission

Ethernet
Wireless
Ethernet

Wireless
Bridge

Onboard
PC

RoboCube

Serial Port
Data

Serial Port
Inband Handshake

Figure 4: The flow of the control data from the cockpit to the RoboGuard. For certain parts, the
time can not be predicted.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 11

Figure 5: The inside core of the RoboGuard.



A. Birk and H. Kenn: RoboGuard, a Teleoperated Mobile Security Robot 12

mobile PC

CubeSystem

mobile
base

moduls
sensor

tower
camera

Battery- and Powermanagement
Motorcontrol
Motioncontrol
Odometry and Positioning

5x Ultrasound Sonar

optional (Pyro, Temp., Smoke)
6x Active Infrared

4x USB-cameras
video compression
WaveLAN RF-ethernet

Figure 6: A schematic overview of the different components of the RoboGuard.

Figure 7: Left: The RoboCube, an extremely compact embedded computer for robot control.
Right: The mobile base of RoboGuard. It is completely constructed from CubeSystem com-
ponents including the RoboCube as controller, the motor- and sensor-modules, as well as the
battery-management hardware.


