Robotics and

Autonomous

3 0 4]]
L Systems
ELSEVIE Robotics and Autonomous Systems 39 (2002) 115-127

www.elsevier.com/locate/robot

Programming with behavior-processes
Andreas Birl¢*, Holger Kenrf, Luc Steel®

2 International University Bremen, Campus Ring 1, 28759 Bremen, Germany
b Vrije Universiteit Brussel, Al-Lab, Pleinlaan 2, 1050 Brussels, Belgium

Abstract

The so-called CubeOS is a special software environment for behavior-oriented robotics. It ranges from a dedicated nano-
kernel and hardware drivers for a broad set of sensors and actuators over operating system support for concurrent and real-time
programming to a special high-level language suited for novices in the field. As most special feature, the CubeOS framework
includes a novel scheduler, designed for the particular needs of behavior-oriented robotics. © 2002 Published by Elsevier
Science B.V.

Keywords. Real time; Scheduling; Control; Operating system; Behavior-oriented

1. Introduction As behavior-oriented robotics and its applications
become more and more mature, it is time to focus on
The field of robotics has undergone tremendous efficient implementations of its principles instead of
changes since the mid-eighties on the commercial askeeping on discussing what these principles are. Here,
well as on the scientific side. The robotics market until we deal with a “behavior” from a software engineer-
the mid-eighties was almost completely dominated by ing viewpoint, namely as a software process with a
robot-arms used in industrial manufacturing. Mean- particular set of properties. The most important one is
while, service robots [25], edutainment robots [1], and that several behaviors can be “active” at the same time.
various smaller niches [8] broadened and extended From a practical viewpoint, this means that behav-
the robotics market. On the scientific side, the novel iors must be executed in (pseudo-)parallel, i.e., there
branch of the so-called behavior-oriented robotics must be support foconcurrent programming. In ad-
[4] emerged, following Brooks’' famous critique on dition, a software environment for behavior-oriented
“classic” Al and robotics [16,17,19]. These two si- robotics obviously deals with control. Hence, there
multaneous shifts in focus, sometimes even dubbed must be support foreal-time processes, ensuring
revolutions, came along with a series of fundamental guaranteed time-related qualities of service. Existing
up to philosophical debates. Especially, the notion behavior-oriented programming languages like the
of “behavior”, which runs as a red thread through subsumption architecture [17,18] or motor schemas
both shifts, is used within a wide range of interpre- [2,3] came out of early scientific work in this field.
tations and definitions as pointed out for example in Accordingly, they did not incorporate any consider-
[32]. ations on efficiency or software engineering, forcing
the user to do a lot of hand-tailoring for each partic-
ular application. As a consequence, these languages
* Corresponding author. are not widely distributed. Instead, the complete
E-mail address: a.birk@iu-bremen.de (A. Birk). software environment for every behavior-oriented

0921-8890/02/$ — see front matter © 2002 Published by Elsevier Science B.V.
Pll: S0921-8890(02)00198-7

116 A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

project around the globe is usually developed from 2. The hardware side of the CubeSystem
scratch.

The so-called CubeSystem project is an attempt to 2.1. The RoboCube as embedded controller
overcome this situation. The CubeSystem is a kind
of advanced construction kit for robotics, including The CubeOS runs on different hardware platforms
hardware as well as software components. The soft- [27]. The so-called RoboCube (Fig. 1) is the most im-
ware side, on which we focus here, centers around portant one within the CubeSystem. The RoboCube
the so-called CubeOS, a special operating system[14,15] has a open bus architecture which allows to
designed to support behavior-oriented programming. add “infinitely” many sensor/motor interfaces (at the
First of all, it features standard programming con- price of bandwidth). But for most applications the
structs for real-time and concurrent programming standard set of interfaces should be more than suffi-
[20,30,36]. Furthermore, it supports a wide range cient. RoboCube’s basic set of ports consists of
of devices employed in the CubeSystem through
libraries and it facilitates the development of new
drivers to incorporate further devices, let it be sensors,
actuators, or computational hardware. Last but not
least, it features a novel scheduling scheme designed
for behavioral processes. This so-called B-scheduling . :

X . . : e 3 DC-motor controller with pulse accumulation

can handle behaviors running on different time scales (PAC)
represented through the so-called exponential effect '
priorities. It is usually neglected that behavioral pro- The basic RoboCube features a 32-bit processor, the
cesses can span very different time periods. A processMotorola MC68332, 1 MB Flash-EPROM, and 1 MB
doing pulse width modulation (PWM) has for example SRAM. The RoboCube is extremely compact, namely
to operate for some DC-motors in the 20kHz range, 50 mmx 60 mmx 80 mm, as special stacking connec-
i.e., on atime basis of & 10~ seconds. A behavior tors are used to build the global bus perpendicular to
monitoring batteries in contrast operates on a scale of the plane of the boards. The system can therefore be
minutes. Some adaptive or learning behaviors can op- easily extended by stacking additional boards on top of
erate on much higher scales like hours or even days.the others. This layout is also mechanically very stable
The idea of exponential effect priorities is therefore to and guarantees secure connections. It leads to a cu-
cover a wide range of time scales. Hence, the period- bic form of the controller, hence the name RoboCube.
icity of a process is halved when its priority value is RoboCubes can be networked together with host-PCs
increased by 1. Scheduling processes with such widely via several serial ports or in a wireless manner via
spread periods is a non-trivial task. The novel scheme special RF-modules included in the CubeSystem.
of B-scheduling results in guaranteed performance re-
garding the periodicity of the processes, a very impor- 2.2. A versatile system
tant feature for control, while eliminating idle-time,
i.e., B-scheduling achieves time-optimal execution of One application of the CubeSystem is within the
processes. Small Robots League of RoboCup, the world cham-

The rest of this article is structured as follows. pionship of robot soccer [26,28]. There, the computa-
Section 2 gives a short overview on the hardware tional core is used together with specially engineered,
side of the CubeSystem and presents some of thesolid mechanical building blocks (Fig. 2). The main
applications where it is employed. In Section 3, researchthemes for this team are on-board control and
the basic technical details of the CubeOS are in- the exploitation of heterogeneity [12]. A detailed de-
troduced. Section 4 introduces B-scheduling and scription of the team is found in [23,24].
presents results. In Section 5, the process description The infrastructure for the small size team is also
language (PDL) as high-level option to program with used for educational work that originated at the Vrije
CubeOS is shortly presented. Section 6 concludes theUniversiteit Brussel (VUB) and that is now contin-
article. ued at the International University Bremen (IUB). In

24 analog/digital (A/D) converter,
6 digital/analog (D/A) converter,
16 binary input/output (binl/O),

e 5 binary inputs,

e 10 timer channels (TPC),

117

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

< Data, Adr, /CS, /IRQ, TP, SPL, 2xI2C, 3xRS232 >

CPuU Extension /O

ROM RAM Busmaster Subsystem

-7 g /t

X /1

-7 /0

57 - /I :

!

Bin !

10 IR send i,

i

i

_ IR recv f
TP ext |
!

Motors
IADC/DAC |/

UHFtrev

Fig. 1. A picture of the RoboCube (top) and the layout of its internal bus structure (bottom).

118 A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

Fig. 2. The drive unit (top) as a mechanical building block, which can be integrated into several different robots for the RoboCup Small
Size League, such as, e.g. the ones shown in the lower picture.

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127 119

addition, mid-sized robots based on the CubeSysteme The CubeOS API provides access to all the kernel
and mechanical construction kits (Fig. 3) have been and driver functions. It is a subset of the POSIX
used for a course on Autonomous Systems at the standard which is enhanced by several additional
VUB and the German University of Koblenz-Landau. functions.

The course consists of a theoretical lecture and prac- access to sensors and actuators is provided by a
tical exercises where the students build and program library of functions that in turn uses the CubeOS
robots [1]. API for accessing the hardware. By using this lay-

The so-called VUB ecosystem is an other robotic graq approach, the framework hides the details and
environment where the CubeSystem provides the in- ,\ides the user with a simple interface to control

frastructure. In the basic ecosystem (Fig. 4), mobile o sensor and actuator devices of the system. The
robots stay operational over extended periods in ime jy«arna) real-time clock of the nanocore provides mil-
by autonomously re-charging their batteries [7]. The |igecond resolution. This clock is also used to trigger
so-called competitors establish a working task, such o pre-emption of the application threads by the
that the robots are kept busy [29,33]. In an extended ,5nqc0re scheduler and to drive the CubeOS functions
version, robots also face dangerous situations which o+ jea| with time. The nanocore’s internal scheduler
must be avoided [5]. Despite its simplicity, the VUB g 5 nre_emptive round-robin scheduler with priorities.
ecosystem provides many possibilities for research on | ;g mainly used to provide CPU time to the internal
various su_bjects including basic ecpnomic concepts - ,heOS services such as communication. Although
[21], learning [9,34,35], heterogeneity [6], coopera- he internal CubeOS threads have a higher priority
tion [22], trust [10,11], and many more. In addition to o1 the application program, they are often sus-
education and basic research, the CubeSystem is in'pended, and therefore leaving most of the CPU time
corporated in ir_ldustrial proje(_:ts. One is the so-called {j he application program. The internal network stack
RoboGuard (Fig. 5), a semi-autonomous robot for ynjements a layered communication infrastructure.
surveillance applications, marketed by the Belgian |15 |owest level is formed by a hardware-triggered
SME Quadrox. state machine that receives a stream of bytes. It
breaks it into frames which are then presented to the
3. |nside the CubeOS highgr protqcol layers. Thesc_e run within the nanocore
multithreading and are using the nanocores IPC
As motivated in Section 1, CubeOS was de- Mechanisms to communicate. Depending on the ap-
veloped as a modularized real-time executive for Plication, there are multiple internal communication
behavior-based robotics. The CubeOS target code l@yers which provide media arbitration, resend of lost
consists of a small memory footprint nanokernel, a data, packetizing and depacketizing of streams, and
number of sensor and actuator software drivers and aPlatiorm-independent data encoding (XDR).
network stack for wireless communication. The ap-
plication and the necessary parts of the target code
are linked together on the host system to form the
binary application image that is then downloaded into
the RoboCube hardware. The target code consists of
the following core modules:

4. Priorities and efficient scheduling
4.1. Exponential effect priorities

It is often neglected that behavioral processes

e The nanokernel provides basic OS functionality. can span very different time periods. A process do-
Among others, it implements multithreading, inter- ing PWM has for examples to operate for some
rupt service, IPC, semaphores and mutexes, timer DC-motors in the 20kHz range, i.e., on a time basis
and clock functions, basic I/O and system initial- of 5 x 10~° seconds. A behavior monitoring batter-
ization and configuration services. ies in contrast operates on a scale of minutes. Some

e The network stack implements functions to commu- adaptive or learning behaviors could operate on much
nicate over a simple wired or wireless network and higher scales like hours or even days. So, it is de-
for platform-independent data exchange. sirable to span several orders of magnitude for the

120 A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

Fig. 3. Different mid-sized robots based on the CubeSystem and mechanical components from Fisch&ft¢imiknd Legé" (bottom).

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127 121

Fig. 4. A partial view of the so-called ecosystem (top) with a charging station, one of the mobile robots and one of the so-called competitors.
Mobile robots (bottom) can operate over extended periods in time in the ecosystem by autonomously re-charging their batteries. The
competitors establish a kind of working task.

122 A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

camera mobile PC

4x USB-cameras
tower video compression

WaveLAN RF-ethernet
sensor CubeSystem
I‘I‘lOdulS 5x Ultrasound Sonar

6x Active Infrared

optional (Pyro, Temp., Smoke)
mObl le Edo.meuy and Positioning

otioncontrol

base Motorcontrol

Battery- and Powermanagement

Fig. 5. The inside core of the RoboGuard base, a commercial semi-autonomous robot for surveillance applications.

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

time periods of different processes. A linear priority

123

so-calledmajor cycle, which is constantly repeated.

scheme is not suited for this. Therefore, the so-called The major cycle consists of several so-callethor

exponential effect priorities are introduced here. The
idea is that for each increase in a priority value by 1,
the periodicity is halved.

In the remainder of this article the following naming
conventions are used:

e the set of processe® = {po, ..., pn—1},

e the priority value of procesg; : pv[pil,

e the set of processes with priorigor thekth priority
class:PCy,

e the highest used priority valueaxpuv.

So, the exact semantic of a priority valpe{ p;] of
process; within exponential effect priorities is:

e pv[p;] = 0 & p; is executed with the maximum
frequencyfo,

e pv[pi] =n & p; is executed with the frequendy
which is half the frequency of the previous priority
class, i.e.fy, = fn-1/2.

4.2. B-scheduling

For solving the task of finding a suitable order of
execution of the processes, we useyalic execu-
tive scheduling approach [20]. This means there is a

cycles. Each minor cycle is a set of processes, which
are executed when the minor cycle is activated. The
general problem of finding a suitable schedule within
this approach is NP-hard as it can be reduced to the
Bin-Packing problem in a straightforward manner. We
present an extremely efficient, namely linear-time al-
gorithm, which is based on the restriction to exponen-
tial effect priorities. As motivated above, we do not
see this as a limitation, but even as a feature.

B-scheduling is implemented in CubeOS with C.
Figs. 6 and 7 show the critical parts of B-scheduling
in a pseudo-code. An important variable in both parts
is wait[piq]. It specifies for each procegg how long
it has to wait in number of cycles until it is executed
again. During the execution of a B-schedule (Fig. 7),
wait is constantly decremented in each cycle. When
a procesgiq is executed, its waitvait[piq] is set to
2P'[pig]. Therefore, the execution gfig is spread
evenly over the minor cycles in the major cycle.

The dynamic execution part of a B-schedule (Fig. 7)
is more or less straightforward. The “real magic”
is done in the static initialization of thevait-values
(Fig. 6). Note that the initial value ofvait[pig] de-
termines in which minor cyclgig will be executed
for the first time. So, computing suited initial waits

/* Initialization */

quicksort(P)

pc=1

start =0

Nsiots = 1

Vi€ {0, ...,maxpv — 1} : {
start = 2 - start

© 00 N O W N e

TNslots = 2- TNslots
Vid with pulpig] = pe -

= e
N = O

}

=
W

pc=pc+1

e
a
—

/* computing the initial wait-values for each process pyy */

wait[py] = reverse((start + id) modulo nes)

start = (start + #{pia | pr[pia) = pc}) modulo N

Fig. 6. The initialization of B-scheduling.

124

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

1 /* Execute the Major Cycle */
2 for(round = 0; round < npi.; round =round +1) {

3 /* Execute the Minor Cycle */
4 d=0
5 done =0
6 while((done < perfect) N (id < #P)){
7 if(wait[p) ==0) {
8 execute piq
9 wait[p,;d} = QPU[‘D'“J]
10 done = done + 1
11 }
12 id=1id + 1
13 }
14 Vpia € P o if(wait[pig] > 0) 1 wait[pyy] = wait[p;] — 1
15 }

Fig. 7. The execution of a B-schedule.

produces a B-schedule. Note, that the number of

wait-values is equal to the number of process@s #
So, the complete schedule which is of size®) is

represented in a single variable for each process, i.e.

in the overall size Q¢P).

Before discussing the initialization of theit-values
in more detail, a special command from Fig. 6 has
to be explained. Theever se() is used to reverse
the bit-order of a binary number. More concretely, let
B, =[bo,...,b,—1] and R, = [ro, ..., r,—1] denote

The overall se§S can be expressed &8¢0, 1). It can
recursively be divided in smaller lists and sublists.
When computing the initialvait-values, the goal

,is to distribute processes such that the minor cycles

are equally filled up. Each execution process of class
PC; can be seen as a lis{start, 2"Pv—*) of minor
cycles. The first value fostart is zero, i.e., the first
slot in the first minor cycle is used. The distarttes
2maxpv=pv 541, From then on, further lists can be com-
puted. The difficulty is to keep track of thetart po-

two binary numbers, each represented as arrays ofsition. Especially, so-to-say leftovers, i.e., empty lists

bits b;, respectivelyr;. The functionr ever se() is
then defined as

reverse(B,) =R, withr,=b,_;

The main idea when computing suited initial
wait-values is as follows. Imagine a sStof natural
numbers with a cardinality equal to a power of 2.
Let Sstart, d) denote a sequence which begins at
the numberstart and “jumps” further to numbers
which are distancd away, i.e..x = (kd)nodul o#S
with k € N. Whenstart andd are powers of 2Sis
called harmonic. It holds that for each harmonic list
S, we can create two harmonic lis§ and S such
that S = S1 U S», namely:

o 51 = S(start, 2d),
e So = S(start+d/2, 2d).

not used up by clas’C;_1, have to be used when the
classPC;_; is handled.

Table 1 shows as an example a set of processes with
their priority valuespv[], their corresponding wait-
ing time 2*ll between executions, and their initial

Table 1

A set of processes with their priority valups[], their correspond-
ing waiting time between executions, and their initiadit-values
calculated with the algorithm shown in Fig? 6

Name pl.l pl.2 pl3 p21 p2.2 p3.1 pdl pd.2 p43

pv[] 1 1 1 2 2 3 4 4 4
2P] 2 2 2 4 4 8 16 16 16
wait 0 1 0 1 3 0 4 12 2

2The wait-values lead to the schedule shown in Table 2 when
the B-scheduler (Fig. 7) is invoked.

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

Table 2
A simple example of a major cycle computed with B-scheddling

Minor cycle number Processes within the cycle

0 pl.1, p1.3, p3.1
1 pl.2, p2.1

2 pl.1, p1.3, p4.3
3 pl.2, p2.2

4 pl.1, p1.3, p4.1
5 pl.2, p2.1

6 pl.1, pl1.3

7 pl.2, p2.2

8 pl.1, p1.3, p3.1
9 pl.2, p2.1

10 pl.1, pl1.3

11 pl.2, p2.2
12 pl.1, p1.3, p4.2
13 pl.2, p2.1
14 pl.1, pl1.3
15 pl.2, p2.2

2The notation X.Y denotes process numb¥rwithin priority
classPCy. Note that there is no straightforward distribution of
dirty and perfect cycles, i.e., minor cycles which consist in this
example of either two or three processes.

wait-values calculated with the algorithm shown
in Fig. 6. The interested reader can try to find a
time-optimal, well-balanced schedule of the pro-

125

e process: A piece of program which is executed
in (virtual) parallel with other processes in the
so-called PDL cycles.

e val ue(q): This function returns the value of the
guantityq from the previous PDL cycle.

e add_val ue(q, €): This procedure influences the
value of a quantityy by summing the evaluation of
the expressiom to g. The change takes only effect
at the end of the PDL cycle in which the procedure
was activated. Note that othedd- val ue com-
mands in the same process or in other processes can
influenceq at the same time.

e dt (): This function returns the time difference
between the start of the recent PDL cycle and the
start of the previous PDL cycle.

In the implementation in the CubeOS framework,
the quantities are represented byta uct datastruc-
ture that holds both the current and the future numer-
ical value. All native numerical datatypes of C can be
used here, i.ef| oat or short, however, the pro-
grammer has to take care of the specific properties of
the datatype to prevent overflows or imprecisions. The
PDL processes are implemented as simple argument-
less C functions that do not return values. Instead,

cesses (of course without using the pre-computed the only data exchange with other parts of the pro-

wait-values). The time-optimal, well-balanced sched-
ule computed by B-scheduling is shown in Table 2.

5. High-level language support

The so-called PDL was introduced in [31] and later
on extended [13]. PDL provides behavior-oriented
programming functionality in a high-level language
format on top of CubeOS. Therefore, it facilitates

gram are implemented through the access functions
to quantities which are global variables. The access
functionsval ue(q) and add_val ue(qg, xX) are im-
plemented as macros to increase efficiency. To make
the PDL runtime system aware of the presence of a
PDL process, a special C functiadd_pr ocess()

is implemented that takes the C function implement-
ing the PDL process as argument. By calling the
run_pdl () function, the application program then
invokes the B-scheduler as one thread of the inter-

an easy start for novices to the field as has been nal CubeOS multithreading that in turn executes the

proven in various educational activities. PDL en-
ables the efficient description of a network of dy-

namical processes in terms of variables whose state
changes at the beginning of each program execution

cycle.
The basic PDL programming constructs are:

e quantity: A bounded variableg, i.e., a vari-
able with fixed minimum and maximum value.

predefined PDL processes.

6. Conclusion

The article described a software environment for
behavior-oriented robotics. This environment is con-
structed around CubeOS, a special operating frame-

work, from a dedicated nanokernel and hardware

Sensor and motor values are represented by basicdrivers for a broad set of sensors and actuators over

guantities which can only read, or respectively be
written.

operating system support for concurrent and real-time
programming to a special high-level language suited

126 A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

for novices in the field. The CubeOS is the software
part of the CubeSystem, a kind of construction kit for

behavior-oriented robotics which is successfully used

in a constantly growing number of applications.

Proceedings of the Sixth European Workshop on Learning
Robots, Lecture Notes in Atrtificial Intelligence, Vol. 1545,
Springer, Berlin, 1998.

[10] A. Birk, Boosting cooperation by evolving trust, Applied
Artificial Intelligence 14 (8) (2000) 769-784.

The CubeOS is not only an engineering effort [11) o Birk, Leaming to trust, in: R. Falcone, M.P. Singh,

for providing useful software functionality within a

behavior-oriented robotics background but also the

CubeOS framework includes a novel scheduler, de- ;))
d [12] A. Birk, H. Kenn, Heterogeneity and on-board control in the

signed for the particular needs of behavior-oriente

robotics. This so-called B-scheduling can handle be-
haviors running on different time scales represented

through the so-called exponential effect priorities,

Y.-H. Tan (Eds.), Trust in Cyber-Societies, Lecture Notes

in Computer Science, Vol. 2246, Springer, Berlin, 2000,
pp. 133-144.

Small Robots League, in: M. Veloso, E. Pagello, H. Kitano
(Eds.), RoboCup’99: Robot Soccer World Cup I, Lecture
Notes in Artificial Intelligence, Vol. 1856, Springer, Berlin,
1999, pp. 196-209.

covering a wide range of time scales. Concretely, [13] A. Birk, H. Kenn, L. Steels, Efficient behavioral processes,

the periodicy of a process is halved when its priority

value is increased by 1. Scheduling processes with
such widely spread periods is a non-trivial task. The

in: J.-A. Meyer, A. Berthoz, D. Floreano, H.L. Roitblat,
S.W. Wilson (Eds.), From Animals to Animats 6, SAB 2000
Proceedings Supplement Book, The International Society for

Adaptive Behavior, 2000.

novel scheme of B-scheduling results in guaranteed [14] A. Birk, H. Kenn, T. Walle, RoboCube: A “universal’

performance regarding the periodicy of the processes,

a very important feature for control, while eliminating
idle-time, i.e., B-scheduling achieves time-optimal
execution of processes.

References

[1] M. Asada, R. D’Andrea, A. Birk, H. Kitano, M. Veloso,
Robotics in edutainment, in: Proceedings of the International

Conference on Robotics and Automation, San Francisco, CA,

2000.

[2] R.C. Arkin, Motor schema based navigation for a
mobile robot, in: Proceedings of the IEEE International
Conference on Robotics and Automation, Raleigh, NC, 1987,
pp. 264-271.

[3] R.C. Arkin, Cooperation without communication: Multiagent

“special-purpose” hardware for the RoboCup Small Robots
League, in: Proceedings of the Fourth International Sympo-
sium on Distributed Autonomous Robotic Systems, Springer,
Berlin, 1998.

[15] A. Birk, H. Kenn, T. Walle, On-board control in the RoboCup

Small Robots League, Advanced Robotics 14 (1) (2000) 27—
36.

[16] R. Brooks, Achieving artificial intelligence through building

robots, Technical Report Al Memo 899, MIT Al-Lab,
Cambridge, MA, 1986.

[17] R.A. Brooks, A robust layered control system for a mobile

robot, IEEE Journal of Robotics and Automation RA-2 (1)
(1986) 14-23.

[18] R.A. Brooks, The behavior language user’s guide, Technical

Report Al Memo 1227, MIT Al-Lab, Cambridge, MA, April
1990.

[19] R. Brooks, Intelligence without reason, in: Proceedings of

the 1IJCAI-91, Morgan Kaufmann, San Mateo, CA, 1991.

schema-based robot navigation, Journal of Robotic Systems [20] A. Burns, A. Wellings, Real-Time Systems and Programming

9 (3) (1992) 351-364.

[4] R.C. Arkin, Behavior-Based Robotics, MIT Press, Cambridge,
MA, 1998.

[5] T. Belpaeme, A. Birk, On the watch, in: Proceedings of the
30th International Symposium on Automotive Technology
and Automation, Florence, Italy, 1997.

[6] A. Birk, T. Belpaeme, A multi-agent-system based on
heterogeneous robots, in: A. Drogoul, M. Tambe, T. Fukuda
(Eds.), Collective Robotics, CRW’98, Lecture Notes in
Artificial Intelligence, Vol. 1456, Springer, Berlin, 1998.

[7] A. Birk, Autonomous recharging of mobile robots, in:
Proceedings of the 30th International Symposium on
Automotive Technology and Automation, 1997.

Languages, Addison-Wesley, Reading, MA, 1997.

[21] A. Birk, J. Wiernik, Economic aspects of a real-world

ecosystem featuring several robot species, in: Proceedings
of the Second Workshop on Economics with Heterogeneous
Interacting Agents, Ancona, ltaly, 1998.

[22] A. Birk, J. Wiernik, An n-player prisoner's dilemma in

a robotic ecosystem, in: Proceedings of the Eighth Inter-
national Symposium on Intelligent Robotic Systems, SIRS'00,
Reading, UK, 2000.

[23] A. Birk, T. Walle, T. Belpaeme, J. Parent, T. De Vlaminck, H.

Kenn, The Small League RoboCup team of the VUB Al-Lab,
in: Proceedings of the Second International Workshop on
RoboCup, Springer, Berlin, 1998.

[8] A. Birk, Behavior-based robotics, its scope and its prospects, [24] A. Birk, T. Walle, T. Belpaeme, H. Kenn, The VUB Al-Lab

in: Proceedings of the 24th Annual Conference of the IEEE
Industrial Electronics, IEEE Press, New York, 1998.

[9] A. Birk, Robot learning and self-sufficiency: What the
energy-level can tell us about a robot's performance, in:

RoboCup’99 Small League team, in: Proceedings of the Third
RoboCup, Springer, Berlin, 1999.

[25] J.F. Engelberger, Robotics in Service, MIT Press, Cambridge,

MA, 1989.

A. Birk et al./Robotics and Autonomous Systems 39 (2002) 115-127

[26] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa,
RoboCup: The robot world cup initiative, in: Proceedings of
the First International Conference on Autonomous Agents
(Agents’97), ACM Press, New York, 1997.

[27] H. Kenn, CubeOS, the manual, Technical Report Memo
00-04, Vrije Universiteit Brussel, Al-Laboratory, 2000.

[28] H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi,
E. Osawa, H. Matsubara, I. Noda, M. Asada, The RoboCup
Synthetic Agent Challenge 97, in: Proceedings of the
IJCAI'97, Nagoya, Japan, 1997.

[29] D. McFarland, Towards robot cooperation, in: D. CIiff, P.
Husbands, J.-A. Meyer, S.W. Wilson (Eds.), From Animals to
Animats 3, Proceedings of the Third International Conference
on Simulation of Adaptive Behavior, MIT Press/Bradford
Books, Cambridge, MA, 1994.

[30] D.A. Mellichamp, Real-time Computing, Van Nostrand
Reinhold, New York, 1983.

127

[31] L. Steels, The PDL Reference Manual, Technical Report
Memo 92-05, Vrije Universiteit Brussel, Al-Laboratory, 1992.

[32] L. Steels, The artificial life roots of artificial intelligence,
Avrtificial Life 1 (1) (1994).

[33] L. Steels, A case study in the behavior-oriented design of
autonomous agents, in: D. CIiff, P. Husbands, J.-A. Meyer,
S.W. Wilson (Eds.), From Animals to Animats 3, Proceedings
of the Third International Conference on Simulation of
Adaptive Behavior, MIT Press/Bradford Books, Cambridge,
MA, 1994,

[34] L. Steels, Discovering the competitors, Journal of Adaptive
Behavior 4 (2) (1996).

[35] L. Steels, A selectionist mechanism for autonomous behavior
acquisition, Robotics and Autonomous Systems 20 (1997)
117-131.

[36] S.J. Young, Real Time Languages, Ellis Horwood, Chichester,
UK, 1982.

	Programming with behavior-processes
	Introduction
	The hardware side of the CubeSystem
	The RoboCube as embedded controller
	A versatile system

	Inside the CubeOS
	Priorities and efficient scheduling
	Exponential effect priorities
	B-scheduling

	High-level language support
	Conclusion
	References

