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Abstract

The so-called CubeOS is a special software environment for behavior-oriented robotics. It ranges from a dedicated nano-
kernel and hardware drivers for a broad set of sensors and actuators over operating system support for concurrent and real-time
programming to a special high-level language suited for novices in the field. As most special feature, the CubeOS framework
includes a novel scheduler, designed for the particular needs of behavior-oriented robotics. © 2002 Published by Elsevier
Science B.V.
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1. Introduction

The field of robotics has undergone tremendous
changes since the mid-eighties on the commercial as
well as on the scientific side. The robotics market until
the mid-eighties was almost completely dominated by
robot-arms used in industrial manufacturing. Mean-
while, service robots [25], edutainment robots [1], and
various smaller niches [8] broadened and extended
the robotics market. On the scientific side, the novel
branch of the so-called behavior-oriented robotics
[4] emerged, following Brooks’ famous critique on
“classic” AI and robotics [16,17,19]. These two si-
multaneous shifts in focus, sometimes even dubbed
revolutions, came along with a series of fundamental
up to philosophical debates. Especially, the notion
of “behavior”, which runs as a red thread through
both shifts, is used within a wide range of interpre-
tations and definitions as pointed out for example in
[32].
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As behavior-oriented robotics and its applications
become more and more mature, it is time to focus on
efficient implementations of its principles instead of
keeping on discussing what these principles are. Here,
we deal with a “behavior” from a software engineer-
ing viewpoint, namely as a software process with a
particular set of properties. The most important one is
that several behaviors can be “active” at the same time.
From a practical viewpoint, this means that behav-
iors must be executed in (pseudo-)parallel, i.e., there
must be support forconcurrent programming. In ad-
dition, a software environment for behavior-oriented
robotics obviously deals with control. Hence, there
must be support forreal-time processes, ensuring
guaranteed time-related qualities of service. Existing
behavior-oriented programming languages like the
subsumption architecture [17,18] or motor schemas
[2,3] came out of early scientific work in this field.
Accordingly, they did not incorporate any consider-
ations on efficiency or software engineering, forcing
the user to do a lot of hand-tailoring for each partic-
ular application. As a consequence, these languages
are not widely distributed. Instead, the complete
software environment for every behavior-oriented
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project around the globe is usually developed from
scratch.

The so-called CubeSystem project is an attempt to
overcome this situation. The CubeSystem is a kind
of advanced construction kit for robotics, including
hardware as well as software components. The soft-
ware side, on which we focus here, centers around
the so-called CubeOS, a special operating system
designed to support behavior-oriented programming.
First of all, it features standard programming con-
structs for real-time and concurrent programming
[20,30,36]. Furthermore, it supports a wide range
of devices employed in the CubeSystem through
libraries and it facilitates the development of new
drivers to incorporate further devices, let it be sensors,
actuators, or computational hardware. Last but not
least, it features a novel scheduling scheme designed
for behavioral processes. This so-called B-scheduling
can handle behaviors running on different time scales
represented through the so-called exponential effect
priorities. It is usually neglected that behavioral pro-
cesses can span very different time periods. A process
doing pulse width modulation (PWM) has for example
to operate for some DC-motors in the 20 kHz range,
i.e., on a time basis of 5× 10−5 seconds. A behavior
monitoring batteries in contrast operates on a scale of
minutes. Some adaptive or learning behaviors can op-
erate on much higher scales like hours or even days.
The idea of exponential effect priorities is therefore to
cover a wide range of time scales. Hence, the period-
icity of a process is halved when its priority value is
increased by 1. Scheduling processes with such widely
spread periods is a non-trivial task. The novel scheme
of B-scheduling results in guaranteed performance re-
garding the periodicity of the processes, a very impor-
tant feature for control, while eliminating idle-time,
i.e., B-scheduling achieves time-optimal execution of
processes.

The rest of this article is structured as follows.
Section 2 gives a short overview on the hardware
side of the CubeSystem and presents some of the
applications where it is employed. In Section 3,
the basic technical details of the CubeOS are in-
troduced. Section 4 introduces B-scheduling and
presents results. In Section 5, the process description
language (PDL) as high-level option to program with
CubeOS is shortly presented. Section 6 concludes the
article.

2. The hardware side of the CubeSystem

2.1. The RoboCube as embedded controller

The CubeOS runs on different hardware platforms
[27]. The so-called RoboCube (Fig. 1) is the most im-
portant one within the CubeSystem. The RoboCube
[14,15] has a open bus architecture which allows to
add “infinitely” many sensor/motor interfaces (at the
price of bandwidth). But for most applications the
standard set of interfaces should be more than suffi-
cient. RoboCube’s basic set of ports consists of

• 24 analog/digital (A/D) converter,
• 6 digital/analog (D/A) converter,
• 16 binary input/output (binI/O),
• 5 binary inputs,
• 10 timer channels (TPC),
• 3 DC-motor controller with pulse accumulation

(PAC).

The basic RoboCube features a 32-bit processor, the
Motorola MC68332, 1 MB Flash-EPROM, and 1 MB
SRAM. The RoboCube is extremely compact, namely
50 mm×60 mm×80 mm, as special stacking connec-
tors are used to build the global bus perpendicular to
the plane of the boards. The system can therefore be
easily extended by stacking additional boards on top of
the others. This layout is also mechanically very stable
and guarantees secure connections. It leads to a cu-
bic form of the controller, hence the name RoboCube.
RoboCubes can be networked together with host-PCs
via several serial ports or in a wireless manner via
special RF-modules included in the CubeSystem.

2.2. A versatile system

One application of the CubeSystem is within the
Small Robots League of RoboCup, the world cham-
pionship of robot soccer [26,28]. There, the computa-
tional core is used together with specially engineered,
solid mechanical building blocks (Fig. 2). The main
research themes for this team are on-board control and
the exploitation of heterogeneity [12]. A detailed de-
scription of the team is found in [23,24].

The infrastructure for the small size team is also
used for educational work that originated at the Vrije
Universiteit Brussel (VUB) and that is now contin-
ued at the International University Bremen (IUB). In
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Fig. 1. A picture of the RoboCube (top) and the layout of its internal bus structure (bottom).
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Fig. 2. The drive unit (top) as a mechanical building block, which can be integrated into several different robots for the RoboCup Small
Size League, such as, e.g. the ones shown in the lower picture.
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addition, mid-sized robots based on the CubeSystem
and mechanical construction kits (Fig. 3) have been
used for a course on Autonomous Systems at the
VUB and the German University of Koblenz-Landau.
The course consists of a theoretical lecture and prac-
tical exercises where the students build and program
robots [1].

The so-called VUB ecosystem is an other robotic
environment where the CubeSystem provides the in-
frastructure. In the basic ecosystem (Fig. 4), mobile
robots stay operational over extended periods in time
by autonomously re-charging their batteries [7]. The
so-called competitors establish a working task, such
that the robots are kept busy [29,33]. In an extended
version, robots also face dangerous situations which
must be avoided [5]. Despite its simplicity, the VUB
ecosystem provides many possibilities for research on
various subjects including basic economic concepts
[21], learning [9,34,35], heterogeneity [6], coopera-
tion [22], trust [10,11], and many more. In addition to
education and basic research, the CubeSystem is in-
corporated in industrial projects. One is the so-called
RoboGuard (Fig. 5), a semi-autonomous robot for
surveillance applications, marketed by the Belgian
SME Quadrox.

3. Inside the CubeOS

As motivated in Section 1, CubeOS was de-
veloped as a modularized real-time executive for
behavior-based robotics. The CubeOS target code
consists of a small memory footprint nanokernel, a
number of sensor and actuator software drivers and a
network stack for wireless communication. The ap-
plication and the necessary parts of the target code
are linked together on the host system to form the
binary application image that is then downloaded into
the RoboCube hardware. The target code consists of
the following core modules:

• The nanokernel provides basic OS functionality.
Among others, it implements multithreading, inter-
rupt service, IPC, semaphores and mutexes, timer
and clock functions, basic I/O and system initial-
ization and configuration services.

• The network stack implements functions to commu-
nicate over a simple wired or wireless network and
for platform-independent data exchange.

• The CubeOS API provides access to all the kernel
and driver functions. It is a subset of the POSIX
standard which is enhanced by several additional
functions.

Access to sensors and actuators is provided by a
library of functions that in turn uses the CubeOS
API for accessing the hardware. By using this lay-
ered approach, the framework hides the details and
provides the user with a simple interface to control
the sensor and actuator devices of the system. The
internal real-time clock of the nanocore provides mil-
lisecond resolution. This clock is also used to trigger
the pre-emption of the application threads by the
nanocore scheduler and to drive the CubeOS functions
that deal with time. The nanocore’s internal scheduler
is a pre-emptive round-robin scheduler with priorities.
It is mainly used to provide CPU time to the internal
CubeOS services such as communication. Although
the internal CubeOS threads have a higher priority
than the application program, they are often sus-
pended, and therefore leaving most of the CPU time
to the application program. The internal network stack
implements a layered communication infrastructure.
Its lowest level is formed by a hardware-triggered
state machine that receives a stream of bytes. It
breaks it into frames which are then presented to the
higher protocol layers. These run within the nanocore
multithreading and are using the nanocores IPC
mechanisms to communicate. Depending on the ap-
plication, there are multiple internal communication
layers which provide media arbitration, resend of lost
data, packetizing and depacketizing of streams, and
platform-independent data encoding (XDR).

4. Priorities and efficient scheduling

4.1. Exponential effect priorities

It is often neglected that behavioral processes
can span very different time periods. A process do-
ing PWM has for examples to operate for some
DC-motors in the 20 kHz range, i.e., on a time basis
of 5 × 10−5 seconds. A behavior monitoring batter-
ies in contrast operates on a scale of minutes. Some
adaptive or learning behaviors could operate on much
higher scales like hours or even days. So, it is de-
sirable to span several orders of magnitude for the
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Fig. 3. Different mid-sized robots based on the CubeSystem and mechanical components from FischertechnikTM (top) and LegoTM (bottom).
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Fig. 4. A partial view of the so-called ecosystem (top) with a charging station, one of the mobile robots and one of the so-called competitors.
Mobile robots (bottom) can operate over extended periods in time in the ecosystem by autonomously re-charging their batteries. The
competitors establish a kind of working task.



122 A. Birk et al. / Robotics and Autonomous Systems 39 (2002) 115–127

Fig. 5. The inside core of the RoboGuard base, a commercial semi-autonomous robot for surveillance applications.
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time periods of different processes. A linear priority
scheme is not suited for this. Therefore, the so-called
exponential effect priorities are introduced here. The
idea is that for each increase in a priority value by 1,
the periodicity is halved.

In the remainder of this article the following naming
conventions are used:

• the set of processes:P = {p0, . . . , pN−1},
• the priority value of processpi : pv[pi ],
• the set of processes with priorityk or thekth priority

class:PCk,
• the highest used priority value:maxpv.

So, the exact semantic of a priority valuepv[pi ] of
processpi within exponential effect priorities is:

• pv[pi ] = 0 ⇔ pi is executed with the maximum
frequencyf0,

• pv[pi ] = n ⇔ pi is executed with the frequencyfn
which is half the frequency of the previous priority
class, i.e.,fn = fn−1/2.

4.2. B-scheduling

For solving the task of finding a suitable order of
execution of the processes, we use acyclic execu-
tive scheduling approach [20]. This means there is a

Fig. 6. The initialization of B-scheduling.

so-calledmajor cycle, which is constantly repeated.
The major cycle consists of several so-calledminor
cycles. Each minor cycle is a set of processes, which
are executed when the minor cycle is activated. The
general problem of finding a suitable schedule within
this approach is NP-hard as it can be reduced to the
Bin-Packing problem in a straightforward manner. We
present an extremely efficient, namely linear-time al-
gorithm, which is based on the restriction to exponen-
tial effect priorities. As motivated above, we do not
see this as a limitation, but even as a feature.

B-scheduling is implemented in CubeOS with C.
Figs. 6 and 7 show the critical parts of B-scheduling
in a pseudo-code. An important variable in both parts
is wait[pid]. It specifies for each processpid how long
it has to wait in number of cycles until it is executed
again. During the execution of a B-schedule (Fig. 7),
wait is constantly decremented in each cycle. When
a processpid is executed, its waitwait[pid] is set to
2pv[pid]. Therefore, the execution ofpid is spread
evenly over the minor cycles in the major cycle.

The dynamic execution part of a B-schedule (Fig. 7)
is more or less straightforward. The “real magic”
is done in the static initialization of thewait-values
(Fig. 6). Note that the initial value ofwait[pid] de-
termines in which minor cyclepid will be executed
for the first time. So, computing suited initial waits
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Fig. 7. The execution of a B-schedule.

produces a B-schedule. Note, that the number of
wait-values is equal to the number of processes #P.
So, the complete schedule which is of size O(2#P ) is
represented in a single variable for each process, i.e.,
in the overall size O(#P).

Before discussing the initialization of thewait-values
in more detail, a special command from Fig. 6 has
to be explained. Thereverse( ) is used to reverse
the bit-order of a binary number. More concretely, let
Bn = [b0, . . . , bn−1] andRn = [r0, . . . , rn−1] denote
two binary numbers, each represented as arrays of
bits bi , respectively,ri . The functionreverse( ) is
then defined as

reverse(Bn) = Rn with ri = bn−i

The main idea when computing suited initial
wait-values is as follows. Imagine a setS of natural
numbers with a cardinality equal to a power of 2.
Let S(start, d) denote a sequence which begins at
the numberstart and “jumps” further to numbersx
which are distanced away, i.e.,x = (kd)modulo#S
with k ∈ N. Whenstart and d are powers of 2,S is
called harmonic. It holds that for each harmonic list
S, we can create two harmonic listsS1 and S2 such
thatS = S1 ∪ S2, namely:

• S1 = S(start, 2d),
• S2 = S(start + d/2, 2d).

The overall setS can be expressed asS(0, 1). It can
recursively be divided in smaller lists and sublists.

When computing the initialwait-values, the goal
is to distribute processes such that the minor cycles
are equally filled up. Each execution process of class
PCk can be seen as a listS(start, 2maxpv−k) of minor
cycles. The first value forstart is zero, i.e., the first
slot in the first minor cycle is used. The distanced is
2maxpv−pv[p0]. From then on, further lists can be com-
puted. The difficulty is to keep track of thestart po-
sition. Especially, so-to-say leftovers, i.e., empty lists
not used up by classPCk−1, have to be used when the
classPCk−1 is handled.

Table 1 shows as an example a set of processes with
their priority valuespv[ ], their corresponding wait-
ing time 2pv[ ] between executions, and their initial

Table 1
A set of processes with their priority valuespv[ ], their correspond-
ing waiting time between executions, and their initialwait-values
calculated with the algorithm shown in Fig. 6a

Name p1.1 p1.2 p1.3 p2.1 p2.2 p3.1 p4.1 p4.2 p4.3

pv[ ] 1 1 1 2 2 3 4 4 4
2pv [ ] 2 2 2 4 4 8 16 16 16
wait 0 1 0 1 3 0 4 12 2

a The wait-values lead to the schedule shown in Table 2 when
the B-scheduler (Fig. 7) is invoked.
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Table 2
A simple example of a major cycle computed with B-schedulinga

Minor cycle number Processes within the cycle

0 p1.1, p1.3, p3.1
1 p1.2, p2.1
2 p1.1, p1.3, p4.3
3 p1.2, p2.2
4 p1.1, p1.3, p4.1
5 p1.2, p2.1
6 p1.1, p1.3
7 p1.2, p2.2
8 p1.1, p1.3, p3.1
9 p1.2, p2.1

10 p1.1, p1.3
11 p1.2, p2.2
12 p1.1, p1.3, p4.2
13 p1.2, p2.1
14 p1.1, p1.3
15 p1.2, p2.2

a The notation pX.Y denotes process numberY within priority
classPCX . Note that there is no straightforward distribution of
dirty and perfect cycles, i.e., minor cycles which consist in this
example of either two or three processes.

wait-values calculated with the algorithm shown
in Fig. 6. The interested reader can try to find a
time-optimal, well-balanced schedule of the pro-
cesses (of course without using the pre-computed
wait-values). The time-optimal, well-balanced sched-
ule computed by B-scheduling is shown in Table 2.

5. High-level language support

The so-called PDL was introduced in [31] and later
on extended [13]. PDL provides behavior-oriented
programming functionality in a high-level language
format on top of CubeOS. Therefore, it facilitates
an easy start for novices to the field as has been
proven in various educational activities. PDL en-
ables the efficient description of a network of dy-
namical processes in terms of variables whose state
changes at the beginning of each program execution
cycle.

The basic PDL programming constructs are:

• quantity: A bounded variableq, i.e., a vari-
able with fixed minimum and maximum value.
Sensor and motor values are represented by basic
quantities which can only read, or respectively be
written.

• process: A piece of program which is executed
in (virtual) parallel with other processes in the
so-called PDL cycles.

• value(q): This function returns the value of the
quantityq from the previous PDL cycle.

• add value(q, e): This procedure influences the
value of a quantityq by summing the evaluation of
the expressione to q. The change takes only effect
at the end of the PDL cycle in which the procedure
was activated. Note that otheradd-value com-
mands in the same process or in other processes can
influenceq at the same time.

• dt( ): This function returns the time difference
between the start of the recent PDL cycle and the
start of the previous PDL cycle.

In the implementation in the CubeOS framework,
the quantities are represented by astruct datastruc-
ture that holds both the current and the future numer-
ical value. All native numerical datatypes of C can be
used here, i.e.,float or short, however, the pro-
grammer has to take care of the specific properties of
the datatype to prevent overflows or imprecisions. The
PDL processes are implemented as simple argument-
less C functions that do not return values. Instead,
the only data exchange with other parts of the pro-
gram are implemented through the access functions
to quantities which are global variables. The access
functionsvalue(q) and add value(q, x) are im-
plemented as macros to increase efficiency. To make
the PDL runtime system aware of the presence of a
PDL process, a special C functionadd process( )
is implemented that takes the C function implement-
ing the PDL process as argument. By calling the
run pdl( ) function, the application program then
invokes the B-scheduler as one thread of the inter-
nal CubeOS multithreading that in turn executes the
predefined PDL processes.

6. Conclusion

The article described a software environment for
behavior-oriented robotics. This environment is con-
structed around CubeOS, a special operating frame-
work, from a dedicated nanokernel and hardware
drivers for a broad set of sensors and actuators over
operating system support for concurrent and real-time
programming to a special high-level language suited
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for novices in the field. The CubeOS is the software
part of the CubeSystem, a kind of construction kit for
behavior-oriented robotics which is successfully used
in a constantly growing number of applications.

The CubeOS is not only an engineering effort
for providing useful software functionality within a
behavior-oriented robotics background but also the
CubeOS framework includes a novel scheduler, de-
signed for the particular needs of behavior-oriented
robotics. This so-called B-scheduling can handle be-
haviors running on different time scales represented
through the so-called exponential effect priorities,
covering a wide range of time scales. Concretely,
the periodicy of a process is halved when its priority
value is increased by 1. Scheduling processes with
such widely spread periods is a non-trivial task. The
novel scheme of B-scheduling results in guaranteed
performance regarding the periodicy of the processes,
a very important feature for control, while eliminating
idle-time, i.e., B-scheduling achieves time-optimal
execution of processes.
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